ModelSpace
All Classes Namespaces Functions Variables Enumerations Pages
clockwerk::EkfTimeUpdate< T, N > Class Template Reference

Class to perform EKF time update step. More...

#include <EkfTimeUpdate.hpp>

Collaboration diagram for clockwerk::EkfTimeUpdate< T, N >:

Public Member Functions

int runUpdate (T time_prev, const std::array< T, N > &state_prev, const Matrix< T, N, N > &cov_prev, T time_up, std::array< T, N > *state_up, Matrix< T, N, N > *cov_up)
 Function to run a single extended kalman filter time update step.
 

Public Attributes

Integrator< T, N+N *N > * integrator_ptr = nullptr
 The integrator to be used internally by the EKF stepper. This integrator should be pre-configured to use a rates function with size N + N*N to propagate dynamics In most cases should probably be RK4.
 
Matrix< T, N, N > phi
 Optional return of the phi matrix calculated by EKF.
 

Detailed Description

template<typename T, unsigned int N>
class clockwerk::EkfTimeUpdate< T, N >

Class to perform EKF time update step.

Member Function Documentation

◆ runUpdate()

template<typename T , unsigned int N>
int clockwerk::EkfTimeUpdate< T, N >::runUpdate ( time_prev,
const std::array< T, N > &  state_prev,
const Matrix< T, N, N > &  cov_prev,
time_up,
std::array< T, N > *  state_up,
Matrix< T, N, N > *  cov_up 
)

Function to run a single extended kalman filter time update step.

Parameters
time_prevThe time at which the previous state and covariance are known
state_prevThe previous state as an N element state vector
cov_prevThe previous covariance as an N*N matrix
time_upThe time to which the state and covariance will be propagated
state_upThe updated state at time time_up
cov_upThe updated covariance at time time_up
Returns
Error code corresponding to success/failure

The documentation for this class was generated from the following file: